Differentiate y=cscθ(θ+cotθ)
y′=(cscθ)ddθ(θ+cotθ)+(θ+cotθ)ddθ(cscθ)Using Product Ruley′=(cscθ)(1−csc2θ)+(θ+cotθ)(−cscθcotθ)Using Trigonometric Identitiesy′=(cscθ)(−cot2θ)+(θ+cotθ)(−cscθcotθ)Simplify the equationy′=−cscθcot2θ−θcscθcotθ−cscθcot2θCombine like termsy′=−2cscθcot2θ−θcscθcotθory′=−cscθcotθ(2cotθ+θ)
No comments:
Post a Comment