Tuesday, September 23, 2014

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 61

Determine a number such that limx23x2+ax+a+3x2+x2 exists. If so, find the value of a and the value of the limit.

The value of the denominator as x approaches -2 will be equal to 0. In order for the limit to exist, we equate the numerator to 0.

limx2(3x2+ax+a+3)=03limx2x2+alimx2x+limx2a+limx23=03(2)2+a(2)+a+3=0122a+a+3=015a=0a=15


By substituting the value of a, we can now determine the limit..



limx23x2+ax+a+3x2+x2=limx23x2+15x+15+3x2+x2=limx2(3x+9)\cancel(x+2)\cancel(x+2)(x1)=limx23x+9x1=3(2)+921=33=1

No comments:

Post a Comment