Determine a number such that limx→−23x2+ax+a+3x2+x−2 exists. If so, find the value of a and the value of the limit.
The value of the denominator as x approaches -2 will be equal to 0. In order for the limit to exist, we equate the numerator to 0.
limx→−2(3x2+ax+a+3)=03limx→−2x2+alimx→−2x+limx→−2a+limx→−23=03(−2)2+a(−2)+a+3=012−2a+a+3=015−a=0a=15
By substituting the value of a, we can now determine the limit..
limx→−23x2+ax+a+3x2+x−2=limx→−23x2+15x+15+3x2+x−2=limx→−2(3x+9)\cancel(x+2)\cancel(x+2)(x−1)=limx→−23x+9x−1=3(−2)+9−2−1=3−3=−1
No comments:
Post a Comment