If y=x√x−1, find y″
We have y=x(x−1)12, so by using Quotient Rule
y′=(x−1)12⋅ddx(x)−(x)⋅ddx(x−1)12[(x−1)12]2y′=(x−1)12(1)−x⋅12(x−1)12−1⋅ddx(x−1)x−1y′=(x−1)12−x2(x−1)−12(1)x−1=(x−1)12−x2(x−1)12x−1=2(x−1)−xx−1=2x−2−xx−1=x−2x−1
Again, by applying Quotient Rule
y″=(x−1)⋅ddx(x−2)−(x−2)⋅ddx(x−1)(x−1)2y″=(x−1)(1)−(x−2)(1)(x−1)2=x−1−x+2(x−1)2=1(x−2)2
No comments:
Post a Comment