Friday, August 15, 2014

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 26

Differentiate H(x)=lna2x2a2+x2


if H(x)=lna2x2a2+x2, then by applying Chain Rule and Quotient RuleH(x)=12(a2x2a2+x2)121[(a2+x2)(2x)(a2x2)(2x)(a2+x2)2](a2x2a2+x2)12H(x)=2a2x2x32a2x+2x3(a2+x2)22(a2x2a2+x2)H(x)=4a2x2(a2+x2)(a2x2)H(x)=2a2x(a2+x2)(a2x2)H(x)=2a2xa4x4

No comments:

Post a Comment