Differentiate H(x)=ln√a2−x2a2+x2
if H(x)=ln√a2−x2a2+x2, then by applying Chain Rule and Quotient RuleH′(x)=12(a2−x2a2+x2)12−1⋅[(a2+x2)(−2x)−(a2−x2)(2x)(a2+x2)2](a2−x2a2+x2)12H′(x)=−2a2x−2x3−2a2x+2x3(a2+x2)22(a2−x2a2+x2)H′(x)=−4a2x2(a2+x2)(a2−x2)H′(x)=−2a2x(a2+x2)(a2−x2)H′(x)=−2a2xa4−x4
No comments:
Post a Comment