Determine the derivative of the function $\displaystyle g(x) = \int^{x^2}_{\tan x} \frac{1}{\sqrt{2 + t^4}} dt$
Apply Properties of Integral
$
\begin{equation}
\begin{aligned}
& \int^c_a f(x) dx + \int^b_c f(x) dx = \int^b_a f(x) dx, \text{ So we have}
\\
\\
& g(x) = \int^1_{\tan x} \frac{1}{\sqrt{2 + t^4}} dt + \int^{x^2}_1 \frac{1}{\sqrt{2 + t^4}} dt
\\
\\
& g(x) = - \int^{\tan x}_1 \frac{1}{\sqrt{2 + t^4}} dt + \int^{x^2}_1 \frac{1}{\sqrt{2 + t^4}} dt
\end{aligned}
\end{equation}
$
Let $\displaystyle u_1 = \tan x_1 \frac{du_1}{dx} = \sec ^2 x$ and $\displaystyle u_2 = x^2, \frac{du_2}{dx} = 2x$, then
$
\begin{equation}
\begin{aligned}
g'(x) =& - \frac{d}{dx} \left( \int^{\tan x}_1 \frac{1}{\sqrt{2 + t^4}} dt + \int^{x^2}_1 \frac{1}{\sqrt{2 + t^4}} dt \right) \frac{du}{dx}
\\
\\
g'(x) =& - \frac{1}{\sqrt{2 + u^4_1}} \cdot \frac{du_1}{dx} + \frac{1}{\sqrt{2 + u^4_2}} \cdot \frac{du_2}{dx}
\\
\\
g'(x) =& \left( \frac{-1}{\sqrt{2 + (\tan x)^4}} \cdot \sec ^2 x \right) + \left( \frac{1}{\sqrt{2 + (x^2)^4}} \cdot 2x \right)
\\
\\
g'(x) =& \frac{- \sec^2 x}{\sqrt{2 + \tan^4 x}} + \frac{2x}{\sqrt{2 + x^8}}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment