Sunday, August 31, 2014

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 48

Determine the derivative of the function g(x)=x2tanx12+t4dt

Apply Properties of Integral


caf(x)dx+bcf(x)dx=baf(x)dx, So we haveg(x)=1tanx12+t4dt+x2112+t4dtg(x)=tanx112+t4dt+x2112+t4dt


Let u1=tanx1du1dx=sec2x and u2=x2,du2dx=2x, then


g(x)=ddx(tanx112+t4dt+x2112+t4dt)dudxg(x)=12+u41du1dx+12+u42du2dxg(x)=(12+(tanx)4sec2x)+(12+(x2)42x)g(x)=sec2x2+tan4x+2x2+x8

No comments:

Post a Comment