Determine the derivative of the function g(x)=∫x2tanx1√2+t4dt
Apply Properties of Integral
∫caf(x)dx+∫bcf(x)dx=∫baf(x)dx, So we haveg(x)=∫1tanx1√2+t4dt+∫x211√2+t4dtg(x)=−∫tanx11√2+t4dt+∫x211√2+t4dt
Let u1=tanx1du1dx=sec2x and u2=x2,du2dx=2x, then
g′(x)=−ddx(∫tanx11√2+t4dt+∫x211√2+t4dt)dudxg′(x)=−1√2+u41⋅du1dx+1√2+u42⋅du2dxg′(x)=(−1√2+(tanx)4⋅sec2x)+(1√2+(x2)4⋅2x)g′(x)=−sec2x√2+tan4x+2x√2+x8
No comments:
Post a Comment