Determine the limit limx→−2x3+8x2−4 then identify
if the limit exists and if the limit does not exist, state the fact.
When we rewrite the function, we get
limx→−2x3+8x2−4=limx→−2\cancel(x+2)(x2−2x+4)\cancel(x+2)(x−2)=limx→−2x2−2x+4x−2
The Theoreom on Limits of Rational Functions and Limit Principle tell us that we can substitute
to fin the limit,
limx→−2x2−2x+4x−2=(−2)2−2(−2)+4−2−2=4+4+4−2−2=12−4=−3
Therefore, the limx→−2x3+8x2−4 exist and is equal to −3
No comments:
Post a Comment