Determine the limx→∞(1+ax)bx. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
We can rewrite the limit as...
limx→∞(1+ax)=limx→∞(1+1xa)ba(xa)
If we let u=xa, then...
limx→∞(1+1u)bau=limx→∞[(1+1u)u]ab
Recall that limx→∞(1+1x)x=e
limx→∞[(1+1u)u]ab=[e]ab=eab
No comments:
Post a Comment