Thursday, June 19, 2014

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 24

Determine the limx0xsinxxtanx. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

limx0xsinxxtanx=0sin00tan0=00 Indeterminate form
Thus, by applying L'Hospital's Rule...
limx0xsinxxtanx=limx to01cosx1sec2x

We will still get indeterminate form by evaluating the limit. So we will apply L'Hospital's Rule once more,

limx01cosx1sec2x=limx00(sinx)02secx(sectanx)=limx0sinx2sec2xtanx=limx0sinx2(1cos2x)(sinxcosx)=limx0cos3x2=cos3(0)2=(1)32=12

No comments:

Post a Comment