Determine the limx→0x−sinxx−tanx. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
limx→0x−sinxx−tanx=0−sin00−tan0=00 Indeterminate form
Thus, by applying L'Hospital's Rule...
limx→0x−sinxx−tanx=limx to01−cosx1−sec2x
We will still get indeterminate form by evaluating the limit. So we will apply L'Hospital's Rule once more,
limx→01−cosx1−sec2x=limx→00−(−sinx)0−2secx(sectanx)=limx→0sinx−2sec2xtanx=limx→0sinx−2(1cos2x)(sinxcosx)=limx→0−cos3x2=−−cos3(0)2=−(1)32=−12
No comments:
Post a Comment