Thursday, June 12, 2014

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 38

Differentiate y=x31x2+1+4x3
By applying long division, we get



Thus,
y=[x+x1x2+1]+4x3

Then, by taking the derivative, we obtain

y=ddx(x)+(x2+1)ddx(x1)(x1)ddx(x2+1)(x2+1)2+ddx(4x3)y=1+(x2+1)(1)(x1)(2x)(x2+1)2+12x2y=1+[x21+22+2x(x2+1)2]+12x2y=1+[x2+2x1(x2+1)2]+12x2y=(x2+1)2+x2+2x1+12x2(x2+1)2(x2+1)2y=x4+2x2+1+x2+2x1+12x6+24x4+12x2(x2+1)2y=12x6+25x4+15x2+2x(x2+1)2

No comments:

Post a Comment