Differentiate y=x3−1x2+1+4x3
By applying long division, we get
Thus,
y=[x+−x−1x2+1]+4x3
Then, by taking the derivative, we obtain
y′=ddx(x)+(x2+1)⋅ddx(−x−1)−(−x−1)⋅ddx(x2+1)(x2+1)2+ddx(4x3)y′=1+(x2+1)(−1)−(−x−1)(2x)(x2+1)2+12x2y′=1+[−x2−1+22+2x(x2+1)2]+12x2y′=1+[x2+2x−1(x2+1)2]+12x2y′=(x2+1)2+x2+2x−1+12x2(x2+1)2(x2+1)2y′=x4+2x2+1+x2+2x−1+12x6+24x4+12x2(x2+1)2y′=12x6+25x4+15x2+2x(x2+1)2
No comments:
Post a Comment