Find the integrals ∫π/30sinθ+sinθtan2θsec2θdθ
∫sinθ+sinθtan2θsec2θdθ=∫sinθ(1+tan2θ)sec2θdθApply Pythagorean Identities (1+tan2θ=sec2θ)∫sinθ+sinθtan2θsec2θdθ=∫sinθ\cancelsec2θ\cancelsec2θdθ∫sinθ+sinθtan2θsec2θdθ=sinθdθ∫sinθ+sinθtan2θsec2θdθ=−cosθ+C∫π/30sinθ+sinθtan2θsec2θdθ=−cos(π3)+C[−cos(0)+C]∫π/30sinθ+sinθtan2θsec2θdθ=−12+C+1−C∫π/30sinθ+sinθtan2θsec2θdθ=12
No comments:
Post a Comment