We need to find (a) f∘g, (b) g∘f, (c) f∘f, and (d) g∘g and state their domains
f(x)=x−2,g(x)=x2+3x+4
(a)f∘g=f(g(x)) Substitute the given function g(x) to the value of x of the function f(x)f(x2+3x+4)=x−2 Simplify the equationf(x2+3x+4)=x2+3x+4−2 Combine like terms
f∘g=x2+3x+2
The domain of this function is (−∞,∞)
(b)g∘f=g(f(x))g(x−2)=x2+3x+4 Substitute the given function g(x) to the value of x of the function f(x)g(x−2)=(x−2)2+3(x−2)+4 Simplify the equationg(x−2)=x2−4x+4+3x−6+4 Combine like terms
g∘f=x2−x+2
The domain of this function is (−∞,∞)
(c)f∘f=f(f(x))f(x−2)=x−2 Simplify the equationf(x−2)=x−2−2 Combine like terms
f∘f=x−4
The domain of this function is (−∞,∞)
(d)g∘g=g(g(x))g(x2+3x+4)=x2+3x+4 Substitute the given function g(x) to the value of x of the function f(x)g(x2+3x+4)=(x2+3x+4)2+3(x2+3x+4)+4 Simplify the equationg(x2+3x+4)=x4+3x3+4x2+3x3+9x2+12x+4x2+12x+16+3x2+9x+12+4 Combine like terms
g∘g=x4+6x3+20x2+33x+32
The domain of this function is(−∞,∞)
No comments:
Post a Comment