Sunday, May 18, 2014

College Algebra, Chapter 4, 4.1, Section 4.1, Problem 18

A quadratic function f(x)=3x2+6x2.

a.) Find the quadratic function in standard form.


f(x)=3x2+6x2f(x)=3(x22x)2Factor out 3 from x-termsf(x)=3(x22x+1)2(3)(1)Complete the square: add 1 inside parentheses, subtract (3)(1) outsidef(x)=3(x1)2+1Factor and simplify


The standard form is f(x)=3(x1)2+1.

b.) Find its vertex and its x and y-intercepts.

By using f(x)=a(xh)2+k with vertex at (h,k).

The vertex of the function f(x)=3(x1)2+1 is at (1,1).


Solving for x-interceptSolving for y-interceptWe set f(x)=0, thenWe set x=0, then0=3(x1)2+1Add 3(x1)2y=3(01)2+1Substitute x=03(x1)2=1Divide 3y=3+1Simplify(x1)2=13Take the square rooty=2x1=±13Add 1x=±13+1


c.) Draw its graph.

No comments:

Post a Comment