Determine the $y'$ of the function $\displaystyle y = x^{\frac{3}{2}} - 5x$		
 	
	$
	\begin{equation}
	\begin{aligned}
		y' &= \frac{d}{dx} \left( x^{\frac{3}{2}} - 5x \right)\\
        \\
        &= \frac{d}{dx} \left( x^{\frac{3}{2}} \right) - 5 \cdot \frac{d}{dx} (x)\\
        \\
        &= \frac{3}{2} x^{\frac{3}{2} - 1} - 5(1)\\
        \\
        &= \frac{3}{2} x^{\frac{1}{2} } - 5 \text{ or } \frac{3}{2} \sqrt{x} - 5 
	\end{aligned}
	\end{equation}
	$
	
    
    Then,
  	
	$
	\begin{equation}
	\begin{aligned}
		y'' &= \frac{d}{dx} \left( \frac{3}{2} x^{\frac{1}{2}} - 5 \right)\\
        \\
        &= \frac{3}{2} \cdot \frac{d}{dx} \left( x^{\frac{1}{2}} \right) - \frac{d}{dx} (5)\\
        \\
        &= \frac{3}{2} \left( \frac{1}{2} x^{\frac{1}{2} - 1} \right) - 0 \\
        \\
        &= \frac{3}{4} x^{-\frac{1}{2}} \text{ or } \frac{3}{4x^{\frac{1}{2}}} \text{ or } \frac{3}{4\sqrt{x}}
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment