Evaluate $\displaystyle \int \sin (\ln x) dx$ by making a substitution first, then by using Integration by parts.           
 	If we use $z = \ln x$, then $e^z = x$ so $dx = e^z dz$
 	Thus,
 
 
 	$\displaystyle \int \sin (\ln x) dx = \int \sin z \left( e^z dz \right) = \int e^z \sin z dz$
 	By using Integration by parts, if we let $u = e^z$ and $dv = \sin z dz$ then,
 	$du = e^z dz$ and $v = -\cos z$
 
 	Thus, 
 	
	$
	\begin{equation}
	\begin{aligned}
		\int e^z \sin z dz = uv - \int vdu &= -e^z \cos z - \int (-\cos z) (e^z dz)\\
        \\
        &= -e^z \cos z + \int e^z \cos z dz
	\end{aligned}
	\end{equation}
	$
	
	Again by using Integration by parts, if we let 
	
	$
	\begin{equation}
	\begin{aligned}
		u_1 &= e^z && \text{and}& dv_1 &= \cos z dz \text{, then}\\
        \\
        du_1 &= e^z dz && \text{and}& v_1 &= \sin z                                                                                                                                 
	\end{aligned}
	\end{equation}
	$
	
    So,
    $\displaystyle \int e^z \cos z dz = u_1 v_1 - \int v_1 du, = e^z \sin z - \int \sin z(e^z dz)$
    
    Going back to the first equation,
    $\displaystyle \int e^z \sin z dz = -e^z \cos z + \left[e^z\sin z - \int \sin z \left( e^z dz \right) \right]$
    
	Combining like terms, we obtain
	
	$
	\begin{equation}
	\begin{aligned}
		2 \int e^z \sin z dz &= -e^z \cos z + e^z \sin z\\
        \\
        \int e^z \sin z dz &= \frac{e^z(\sin z - \cos z)}{2}
        
	\end{aligned}
	\end{equation}
	$
	
	but $z = \ln x$,
  Therefore, 
    
	
	$
	\begin{equation}
	\begin{aligned}
		\frac{e^z(\sin z - \cos z)}{2} &= \frac{e^{\ln x} (\sin (\ln x) - \cos (\ln x))}{2}\\
        \\
        &= \frac{x}{2} [ \sin (\ln x) - \cos (\ln x)] + c
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment