Evaluate ∫sin(lnx)dx by making a substitution first, then by using Integration by parts.
If we use z=lnx, then ez=x so dx=ezdz
Thus,
∫sin(lnx)dx=∫sinz(ezdz)=∫ezsinzdz
By using Integration by parts, if we let u=ez and dv=sinzdz then,
du=ezdz and v=−cosz
Thus,
∫ezsinzdz=uv−∫vdu=−ezcosz−∫(−cosz)(ezdz)=−ezcosz+∫ezcoszdz
Again by using Integration by parts, if we let
u1=ezanddv1=coszdz, thendu1=ezdzandv1=sinz
So,
∫ezcoszdz=u1v1−∫v1du,=ezsinz−∫sinz(ezdz)
Going back to the first equation,
∫ezsinzdz=−ezcosz+[ezsinz−∫sinz(ezdz)]
Combining like terms, we obtain
2∫ezsinzdz=−ezcosz+ezsinz∫ezsinzdz=ez(sinz−cosz)2
but z=lnx,
Therefore,
ez(sinz−cosz)2=elnx(sin(lnx)−cos(lnx))2=x2[sin(lnx)−cos(lnx)]+c
No comments:
Post a Comment