Determine the limx→∞xln21+lnx. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
If we let y=xln21+lnx, then
lny=(ln21+lnx)lnx
So,
limx→∞lny=limx→∞(ln2(lnx)1+lnx)
By applying L'Hospital's Rule...
limx→∞(ln2(lnx)1+lnx)=limx→∞ln2(1x)0+(1x)=limx→∞ln2=ln2
Thus,
limx→∞lny=limx→∞(ln2(lnx)1+lnx)=ln2
Therefore, we have
limx→∞xln21+lnx=limx→∞elny=eln2=2
No comments:
Post a Comment