Show that $\displaystyle \frac{d}{dx} \left( \sec^{-1} x \right) = \frac{1}{x\sqrt{x^2 - 1}}$       
	If we let $y = \sec^{-1} x$, then
	$\sec y = x$
	
By Implicit Differentiation,
	$\displaystyle \frac{d}{dx} \sec y = \frac{d}{dx} (x)$
$\displaystyle \sec y \tan y \left( \frac{dy}{dx} \right) = 1$ 
	$\displaystyle \frac{dy}{dx} = \frac{1}{\sec y \tan y}$
	By applying Pythagorean Identity, 
	
	$
	\begin{equation}
	\begin{aligned}
		1 + \tan^y &= \sec^2 y\\
        \\
        \tan y &= \sqrt{\sec^2 y - 1}
	\end{aligned}
	\end{equation}
	$
		
	Thus,
	$\displaystyle \frac{dy}{dx} = \frac{1}{\sec y \sqrt{\sec^2 y - 1}}$
	But $\sec y = x$, therefore,
	$\displaystyle \frac{dy}{dx} = \frac{1}{x \sqrt{x^2 - 1}}$
No comments:
Post a Comment