Saturday, April 19, 2014

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 20

Show that ddx(sec1x)=1xx21
If we let y=sec1x, then
secy=x

By Implicit Differentiation,
ddxsecy=ddx(x)

secytany(dydx)=1
dydx=1secytany

By applying Pythagorean Identity,

1+tany=sec2ytany=sec2y1


Thus,
dydx=1secysec2y1

But secy=x, therefore,
dydx=1xx21

No comments:

Post a Comment