Show that ddx(sec−1x)=1x√x2−1
If we let y=sec−1x, then
secy=x
By Implicit Differentiation,
ddxsecy=ddx(x)
secytany(dydx)=1
dydx=1secytany
By applying Pythagorean Identity,
1+tany=sec2ytany=√sec2y−1
Thus,
dydx=1secy√sec2y−1
But secy=x, therefore,
dydx=1x√x2−1
No comments:
Post a Comment