Simplify the expression $\displaystyle \left( \frac{x^2y}{2y^3} \right)^{-2}$ and eliminate any negative exponents.
  
	$
	\begin{equation}
	\begin{aligned}
		\left( \frac{x^2y}{2y^3} \right)^{-2} &= \left( \frac{2y^3}{x^2y} \right)^2 && \text{Law: } \left( \frac{a}{b} \right)^{-n} = \left( \frac{b}{a} \right)^n\\
        \\
        &= \frac{2^2(y^3)^2}{(x^2)^2(y)^2} && \text{Law: } (ab)^n = a^n b^n\\
        \\
        &= \frac{4y^6}{x^4y^2} && \text{Law: } (a^m)^n = a^{mn}\\
        \\
        &= \frac{4y^{6-2}}{x^4} && \text{Law: } \frac{a^m }{a^n} = a^{m-n}\\
        \\
        &= \frac{4y^4}{x^4}
 	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment