The graph of the given curve is shown below. Find an expression for its function.
You can find the equation of the line using the point slope form.
$
\begin{equation}
\begin{aligned}
y - 3 &= \frac{0-3}{3-0}(x-0) && (\text{Simplifying the equation})\\
\\
y - 3 &= - x && (\text{Solving for } y)\\
\\
y &= -x + 3 \text{ for } 0 \leq x \leq 3\\
\end{aligned}
\end{equation}
$
Again, using point slope form, we can get the equation of the other line.
$
\begin{equation}
\begin{aligned}
y - 0 &= \frac{4 - 0}{5 - 3}(x - 3) && (\text{Simplifying the equation and } \text{solving for } y) \\
\\
y &= 2x - 6 \text{ for } 3 < x \leq 5 && \\
\end{aligned}
\end{equation}
$
Therefore the final expression for this function is...
$
\begin{equation}
\begin{aligned}
\fbox{$ f(x) = \begin{array}{ccc}
-x + 3 & \text { for } & 0 \leq x \leq 3 \\
2x - 6 & \text { for } & 3 \leq x \leq 5
\end{array} $}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment