Determine the derivative of the function $y = \sqrt{x+\sqrt{x}}$
$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} (x + \sqrt{x})^{\frac{1}{2}}\\
\\
y' &= \frac{1}{2} (x + \sqrt{x})^{\frac{-1}{2}} \frac{d}{dx} (x + \sqrt{x})\\
\\
y' &= \frac{1}{2} (x + \sqrt{x})^{\frac{-1}{2}} \left[ \frac{d}{dx}(x) + \frac{d}{dx} (x)^{\frac{1}{2}}\right]\\
\\
y' &= \frac{1}{2} (x + \sqrt{x})^{\frac{-1}{2}} \left[ 1 + \frac{1}{2}(x)^{\frac{-1}{2}}\right]\\
\\
y' &= \left[ \frac{1}{2(x+\sqrt{x})^{\frac{1}{2}}} \right]\left[ 1+\frac{1}{2(x)^{\frac{1}{2}}}\right]
\qquad \text{ or } \qquad y' = \left( \frac{1}{2\sqrt{x+\sqrt{x}}}\right) \left( 1+\frac{1}{2\sqrt{x}}\right)
\end{aligned}
\end{equation}
$
No comments:
Post a Comment