Suppose that f(x)=2x2−x3, find f′(x),f″(x),f‴(x) and f4(x). Graph f,f′,f″ and f‴ on a common screen. Are the graphs consistent with the geometric interpretations of these derivatives?
Using the definition of derivative
f′(x)=limh→0f(x+h)−f(x)hf′(x)=limh→02(x+h)2−(x+h)3−(2x2−x3)hSubstitute f(x+h) and f(x)f′(x)=limh→02(x2+2xh+h2)−(x3+3x2h+3xh2+h3)−2x2+x3hExpand the equationf′(x)=limh→0\cancel2x2+4xh+2h2−\cancelx3−3x2h−3xh2−h3−\cancel2x2+\cancelx3hCombine like termsf′(x)=limh→04xh+2h2−3x2h−3xh2−h3hFactor the numeratorf′(x)=limh→0\cancelh(4x+2h−3x2−3xh−h2)\cancelhCancel out like termsf′(x)=limh→0(4x+2h−3x2−3xh−h2)=4x+2(0)−3x2−3x(0)−(0)2=4x+0−3x2−0−0Evaluate the limitf′(x)=4x−3x2
Using the 2nd derivative of the definition
f″(x)=limh→0f′(x+h)=f′(x)hf″(x)=limh→04(x+h)−3(x+h)2−(4x−3x2)hSubstitute f′(x+h) and f′(x)f″(x)=limh→04x+4h−3(x2+2xh+h2)−4x+3x2hExpand the equationf″(x)=limh→0\cancel4x+4h−\cancel3x2−6xh−3h2−\cancel4x+\cancel3x2hCombine like termsf″(x)=limh→04h−6xh−3h2hFactor the numeratorf″(x)=limh→0\cancelh(4−6x−3h)\cancelhCancel out like termsf″(x)=limh→0(4−6x−3h)=4−6x−3(0)=4−6x−0Evaluate the limitf″(x)=4−6x
Using the 3rd derivative of the definition
f‴(x)=limh→0f″(x+h)=f″(x)hf‴(x)=limh→04−6(x+h)−(4−6x)hSubstitute f″(x+h) and f″(x)f‴(x)=limh→0\cancel4−\cancel6x−6h−\cancel4+\cancel6xhExpand the equation and combine like termsf‴(x)=limh→0−6\cancelh\cancelhCancel out like termsf‴(x)=−6
Using the 4th derivative of the definition
f4(x)=limh→0f‴(x+h)=f‴(x)hIf f‴ is constant, then f‴(x+h)=f‴(x)f4(x)=limh→0−6−(−6)hSubstitute f‴(x+h) and f‴(x)f4(x)=limh→0−6+6h=limh→00hSimplify the equationf4(x)=0
Graph f,f′,f″ and f‴
No comments:
Post a Comment