Sunday, February 23, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 45

Suppose that f(x)=2x2x3, find f(x),f(x),f(x) and f4(x). Graph f,f,f and f on a common screen. Are the graphs consistent with the geometric interpretations of these derivatives?

Using the definition of derivative


f(x)=limh0f(x+h)f(x)hf(x)=limh02(x+h)2(x+h)3(2x2x3)hSubstitute f(x+h) and f(x)f(x)=limh02(x2+2xh+h2)(x3+3x2h+3xh2+h3)2x2+x3hExpand the equationf(x)=limh0\cancel2x2+4xh+2h2\cancelx33x2h3xh2h3\cancel2x2+\cancelx3hCombine like termsf(x)=limh04xh+2h23x2h3xh2h3hFactor the numeratorf(x)=limh0\cancelh(4x+2h3x23xhh2)\cancelhCancel out like termsf(x)=limh0(4x+2h3x23xhh2)=4x+2(0)3x23x(0)(0)2=4x+03x200Evaluate the limitf(x)=4x3x2


Using the 2nd derivative of the definition


f(x)=limh0f(x+h)=f(x)hf(x)=limh04(x+h)3(x+h)2(4x3x2)hSubstitute f(x+h) and f(x)f(x)=limh04x+4h3(x2+2xh+h2)4x+3x2hExpand the equationf(x)=limh0\cancel4x+4h\cancel3x26xh3h2\cancel4x+\cancel3x2hCombine like termsf(x)=limh04h6xh3h2hFactor the numeratorf(x)=limh0\cancelh(46x3h)\cancelhCancel out like termsf(x)=limh0(46x3h)=46x3(0)=46x0Evaluate the limitf(x)=46x


Using the 3rd derivative of the definition


f(x)=limh0f(x+h)=f(x)hf(x)=limh046(x+h)(46x)hSubstitute f(x+h) and f(x)f(x)=limh0\cancel4\cancel6x6h\cancel4+\cancel6xhExpand the equation and combine like termsf(x)=limh06\cancelh\cancelhCancel out like termsf(x)=6


Using the 4th derivative of the definition


f4(x)=limh0f(x+h)=f(x)hIf f is constant, then f(x+h)=f(x)f4(x)=limh06(6)hSubstitute f(x+h) and f(x)f4(x)=limh06+6h=limh00hSimplify the equationf4(x)=0




Graph f,f,f and f

No comments:

Post a Comment