Given the function
f(x)={4−x2 if x≤2x−1 if x>2
a.) Find limx→2−f(x) and limx→2+f(x)
For left hand limit
limx→2−f(x)=limx→2−(4−x2)limx→2−(4−x2)=limx→2−4−limx→2−x2limx→2−(4−x2)=4−(−2)2limx→2−(4−x2)=0
For right hand limit
limx→2+f(x)=limx→2+(x−1)limx→2+f(x)=limx→2+(x−1)limx→2+(x−1)=2−1limx→2+(x−1)=1
b.) Does limx→2f(x) exists?
No, it does not exist because the left and right hand limits are different.
c.)Sketch the graph of f
No comments:
Post a Comment