Sunday, February 16, 2014

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 6

Evaluate f+g, fg, fg and fg of the function f(x)=x2+2x and g(x)=3x21 and find their domain

For f+g,

f+g=f(x)+g(x)f+g=x2+2x+3x21Substitute f(x)=x2+2x and g(x)=3x21f+g=4x2+2x1

The domain of f(x)+g(x) is (,)

For fg

fg=f(x)g(x)fg=x2+2x(3x21)Apply Distributive rulefg=x2+2x3x2+1Simplifyfg=2x2+2x+1

The domain of f(x)g(x) is (,)

For fg

fg=f(x)g(x)fg=(x2+2x)(3x2+1)Apply Distributive propertyfg=3x4+x2+6x3+2x or fg=3x4+6x3+x2+2x

The domain of f(x)g(x) is (,)

For fg

fg=f(x)g(x)fg=x2+2x3x21

The domain of f(x)g(x) is (,13)(13,13)(13,)

No comments:

Post a Comment