Tuesday, January 21, 2014

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 30

Evaluate 10r34+r2dr by using Integration by parts.
If we let u=r2 and dv=rdr4+r2, then
du2rd and v=rdr4+r2

To evaluate rdr4+r2, we let u1=4+r2, then du1=2rdr

So,

rdr4+r2=du12(1u1)=12(u121)du1=12u1212=4+r2


Hence, from integration by parts

10r34+r2dr=uvvdu=r24+r2(4+r2)(2rdr)=r24+r22r4+r2dr



if we let u2=4+r2 , thendu2=2rdr


So,

r4+r2dr=u2(du22)=12(u2)12du2=12(u)3232=(4+r2)323


Therefore,
10r34+r2dr=r24+r22[(4+r2)323]
Evaluating from x=0 to x=1,
10r34+r2=16753

No comments:

Post a Comment