Evaluate ∫10r3√4+r2dr by using Integration by parts.
If we let u=r2 and dv=rdr√4+r2, then
du−2rd and v=∫rdr√4+r2
To evaluate ∫rdr√4+r2, we let u1=4+r2, then du1=2rdr
So,
∫rdr√4+r2=∫du12(1√u1)=12∫(u−121)du1=12u1212=√4+r2
Hence, from integration by parts
∫10r3√4+r2dr=uv−∫vdu=r2√4+r2−∫(√4+r2)(2rdr)=r2√4+r2−2∫r√4+r2dr
if we let u2=4+r2 , thendu2=2rdr
So,
∫r√4+r2dr=∫√u2(du22)=12∫(u2)12du2=12(u)3232=(4+r2)323
Therefore,
∫10r3√4+r2dr=r2√4+r2−2[(4+r2)323]
Evaluating from x=0 to x=1,
∫10r3√4+r2=16−7√53
No comments:
Post a Comment