Differentiate f(x)=xx+cx
f(x)=xx+cxGet the LCD on the denominatorf(x)=xx2+cxSimplify the equationf(x)=x2x2+cf′(x)=(x2+c)ddx(x2)−[(x2)ddx(x2+c)](x2+c)2Apply Quotient Rulef′(x)=(x2+c)(2x)−[(x2)(2x)](x2+c)2Expand the equationf′(x)=\cancel2x3+2cx−\cancel2x3(x2+c)2Combine like termsf′(x)=2cx(x2+c)2
No comments:
Post a Comment