Determine which of the following functions $f$ has a removable discontinuity at $a$? If the discontinuity is removable,
find a function $g$ that agrees with $f$ for $x \neq a$ and is continuous at $a$.
$
\begin{equation}
\begin{aligned}
& \text{(a )} f(x) = \frac{x^4 - 1}{x - 1}, a =1 \\
& \text{(b )} f(x) = \frac{x^3 - x^2 - 2x}{x- 2}, a = 2 \\
& \text{(c )} f(x) = [[\sin x]], a = \pi
\end{aligned}
\end{equation}
$
(a) $\displaystyle f(x) = \frac{x^4 - 1}{x - 1}, a =1 $
$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to 1} \frac{x^4 - 1}{x - 1} =& \frac{(x^2 - 1) (x^2 + 1)}{x - 1} = \frac{(x + 1) \cancel{(x -1)} (x ^2 + 1)}{\cancel{x - 1}} = (x + 1)(x^3 + 1)\\
\\
=& x^3 + x^2 + x + 1
\end{aligned}
\end{equation}
$
The function $\displaystyle \frac{x^4 - 1}{x - 1}$ has a removable discontinuity at $a = 1$.
However, $g(x) = x^3 + x^2 + x + 1$ agrees with $f$ for $x \neq a$ and that $g(x)$ is continuous at $a = 1$
(b) $\displaystyle f(x) = \frac{x^3 - x^2 - 2x}{x- 2}, a = 2$
$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to 2} \frac{x^3 - x^2 - 2x}{x - 2} =& \frac{x(x^2 - x - 2)}{x - 2} = \frac{x [\cancel{(x - 2)}(x + 1)]}{\cancel{x - 2}} = x(x + 1)\\
\\
=& x^2 + x
\end{aligned}
\end{equation}
$
The function $\displaystyle \frac{x^3 - x^2 - 2x}{x - 2}$ has a removable discontinuity at $a = 2$. However, $g(x) = x^2 + x$
agrees with $f(x)$ for $x \neq a$ and that $g(x)$ is continuous at $a=2$.
(c) $\displaystyle f(x) = [[\sin x]], a = \pi$
$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to \pi^-} [[\sin x]]
=& \lim \limits_{x \to \pi^-} [[\sin x]] = \lim \limits_{x \to \pi^-} 0 = 0\\
\lim \limits_{x \to \pi^+} [[\sin x]]
=& \lim \limits_{x \to \pi^+} [[\sin x]] = \lim \limits_{x \to \pi^+} -1 = -1
\end{aligned}
\end{equation}
$
The function $[[\sin x]]$ has a jump discontinuity instead of removable discontinuity. Therefore, the
$\lim\limits_{x \to \pi} [[\sin x]]$ does not exist
No comments:
Post a Comment