Show that tanh(x+y)=tanhx+tanhy1+tanhxtanhy
Solving for the left-hand side of the equation
Using Hyperbolic Function
tanhx=sinhxcoshx=ex−e−xex+e−xtanh(x+y)=e(x+y)−e−(x+y)e(x+y)+e−(x+y)tanh(x+y)=exey−e−xe−yexey+e−xe−y
Using Hyperbolic Identities
coshx+sinhx=ex and coshx−sinhx=e−xtanh(x+y)=(coshx+sinhx)(coshy+sinhy)−(coshx−sinhx)(coshy−sinhy)(coshx+sinhx)(coshy+sinhy)+(coshx−sinhx)(coshy−sinhy)tanh(x+y)=coshxcoshy+coshxsinhy+sinhxcoshy+sinhxsinhy−(coshxcoshy−coshxsinhy)(−sinhxcoshy+sinhxsinhy)coshxcoshy+\cancelcoshxsinhy+\cancelsinhxcoshy+sinhx+sinhy+coshxcoshy−\cancelcoshxsinhy−\cancelsinhxcoshy+sinhxsinhytanh(x+y)=\cancelcoshxcoshy+coshxsinhy+sinhxcoshy+\cancelsinhxsinhy−\cancelcoshxcoshy+coshxsinhy+sinhxcoshy−\cancelsinhxsinhy2coshxcoshy+2sinhxsinhytanh(x+y)=2coshxsinhy+2sinhxcoshy2coshxcoshy+2sinhxsinhytanh(x+y)=\cancel2(coshxsinhy+sinhxcoshy)\cancel2(coshxcoshy+sinhxsinhy)tanh(x+y)=coshxsinhy+sinhxcoshycoshxcoshy+sinhxsinhy⋅1coshxcoshy1coshxcoshytanh(x+y)=\cancelcoshxsinhy\cancelcoshxcoshy+sinhx\cancelcoshycoshx\cancelcoshy\cancelcoshxcoshy\cancelcoshxcoshy+sinhxsinhycoshxcoshytanh(x+y)=sinhycoshy+sinhxcoshx1+sinhxcoshx⋅sinhycoshytanh(x+y)=tanhy+tanhx1+tanhxtanhyortanh(x+y)=tanhx+tanhy1+tanhxtanhy
No comments:
Post a Comment