Monday, December 30, 2013

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 14

Show that tanh(x+y)=tanhx+tanhy1+tanhxtanhy

Solving for the left-hand side of the equation

Using Hyperbolic Function


tanhx=sinhxcoshx=exexex+extanh(x+y)=e(x+y)e(x+y)e(x+y)+e(x+y)tanh(x+y)=exeyexeyexey+exey


Using Hyperbolic Identities


coshx+sinhx=ex and coshxsinhx=extanh(x+y)=(coshx+sinhx)(coshy+sinhy)(coshxsinhx)(coshysinhy)(coshx+sinhx)(coshy+sinhy)+(coshxsinhx)(coshysinhy)tanh(x+y)=coshxcoshy+coshxsinhy+sinhxcoshy+sinhxsinhy(coshxcoshycoshxsinhy)(sinhxcoshy+sinhxsinhy)coshxcoshy+\cancelcoshxsinhy+\cancelsinhxcoshy+sinhx+sinhy+coshxcoshy\cancelcoshxsinhy\cancelsinhxcoshy+sinhxsinhytanh(x+y)=\cancelcoshxcoshy+coshxsinhy+sinhxcoshy+\cancelsinhxsinhy\cancelcoshxcoshy+coshxsinhy+sinhxcoshy\cancelsinhxsinhy2coshxcoshy+2sinhxsinhytanh(x+y)=2coshxsinhy+2sinhxcoshy2coshxcoshy+2sinhxsinhytanh(x+y)=\cancel2(coshxsinhy+sinhxcoshy)\cancel2(coshxcoshy+sinhxsinhy)tanh(x+y)=coshxsinhy+sinhxcoshycoshxcoshy+sinhxsinhy1coshxcoshy1coshxcoshytanh(x+y)=\cancelcoshxsinhy\cancelcoshxcoshy+sinhx\cancelcoshycoshx\cancelcoshy\cancelcoshxcoshy\cancelcoshxcoshy+sinhxsinhycoshxcoshytanh(x+y)=sinhycoshy+sinhxcoshx1+sinhxcoshxsinhycoshytanh(x+y)=tanhy+tanhx1+tanhxtanhyortanh(x+y)=tanhx+tanhy1+tanhxtanhy

No comments:

Post a Comment