Determine the average value of the function f(x)=3(1+x)2 on the interval [1,6].
fave=1b−a∫baf(x)dxfave=16−1∫613(1+x)2dxLet u=1+xdu=dx
Also, make sure that your upper and lower limits are also in terms of u.
fave=35∫1+(6)1+(1)1u2dufave=35∫72u−2dufave=35[u−1−1]72fave=35[−17−(−12)]fave=314
No comments:
Post a Comment