Saturday, December 28, 2013

Single Variable Calculus, Chapter 6, 6.5, Section 6.5, Problem 8

Determine the average value of the function f(x)=3(1+x)2 on the interval [1,6].


fave=1babaf(x)dxfave=161613(1+x)2dxLet u=1+xdu=dx


Also, make sure that your upper and lower limits are also in terms of u.


fave=351+(6)1+(1)1u2dufave=3572u2dufave=35[u11]72fave=35[17(12)]fave=314

No comments:

Post a Comment