Determine the derivative of the function y=r√r2+1
y′=ddr(rr2+1)y′=[(r2+1)12ddr(r)]−[(r)ddr(r2+1)12][(r2+1)12]2y′=[(r2+1)12(1)]−[(r)⋅12(r2+1)12ddr(r2+1)]r2+1y′=(r2+1)12−(r\cancel2)(r2+1)−12(\cancel2r)r2+1y′=(r2+1)12−(r2)(r2+1)−12r2+1y′=(r2+1)12−r2(r2+1)12r2+1y′=\cancelr2+1−\cancelr2(r2+1)(r2+1)12y′=1(r2+1)32
No comments:
Post a Comment