Friday, December 20, 2013

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 27

Determine the derivative of the function y=rr2+1


y=ddr(rr2+1)y=[(r2+1)12ddr(r)][(r)ddr(r2+1)12][(r2+1)12]2y=[(r2+1)12(1)][(r)12(r2+1)12ddr(r2+1)]r2+1y=(r2+1)12(r\cancel2)(r2+1)12(\cancel2r)r2+1y=(r2+1)12(r2)(r2+1)12r2+1y=(r2+1)12r2(r2+1)12r2+1y=\cancelr2+1\cancelr2(r2+1)(r2+1)12y=1(r2+1)32

No comments:

Post a Comment