A Norman window has the shape of a rectangle surrounded by a semicircle. If the perimeter of the window is 30ft, find the dimensions of the window so that the greatest possible amount of light is admitted.
Let P and S be the perimeter and surface area of the window.
P=x+2y+2πr2=x+2y+πrsince r=x2P=x+2y+πx2=x+xπ2+2y
Also, the Surface Area of the window is...
s=xy+πr22;r=x2s=xy+π(x2)22=xy+πx28
We have, P=x+xπ2+2y=30
Solving for y
2y=30−(2x+xπ2)y=30−(2x+xπ2)2=60−2x+xπ4
Substituting the value of y to the equation of the Surface Area...
s=x(60−2x−πx4)+πx28=60x−2x2−πx24+πx28
Taking the derivative with respect to x, we have...
s′=60−4x−2πx4+2πx8when s′=00=60−4x−2πx4+2πx80=120−8x−4πx+2πx80=120−8x−4πx+2πx0=120−8x−2πx2πx+8x=1202x(π+4)=120x=60(π+4)ft
so when, x=60(π+4)
r=x2=(60π+4)2=30(π+4)ft
and,
y=60−2(60π+4)−(60π+4)π4y=4.20ft
Therefore, the greatest possible amount of height will be admitted if the area of the window is...
s=xy+πx28s=(60(π+4))(4.20)+π(60π+4)28s=63ft2
No comments:
Post a Comment