Sunday, November 24, 2013

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 30

A Norman window has the shape of a rectangle surrounded by a semicircle. If the perimeter of the window is 30ft, find the dimensions of the window so that the greatest possible amount of light is admitted.




Let P and S be the perimeter and surface area of the window.

P=x+2y+2πr2=x+2y+πrsince r=x2P=x+2y+πx2=x+xπ2+2y


Also, the Surface Area of the window is...

s=xy+πr22;r=x2s=xy+π(x2)22=xy+πx28


We have, P=x+xπ2+2y=30

Solving for y

2y=30(2x+xπ2)y=30(2x+xπ2)2=602x+xπ4


Substituting the value of y to the equation of the Surface Area...
s=x(602xπx4)+πx28=60x2x2πx24+πx28
Taking the derivative with respect to x, we have...

s=604x2πx4+2πx8when s=00=604x2πx4+2πx80=1208x4πx+2πx80=1208x4πx+2πx0=1208x2πx2πx+8x=1202x(π+4)=120x=60(π+4)ft

so when, x=60(π+4)
r=x2=(60π+4)2=30(π+4)ft

and,

y=602(60π+4)(60π+4)π4y=4.20ft


Therefore, the greatest possible amount of height will be admitted if the area of the window is...

s=xy+πx28s=(60(π+4))(4.20)+π(60π+4)28s=63ft2

No comments:

Post a Comment