a.) Suppose that $g(x) = \displaystyle x^{\frac{2}{3}}$, show that $g'(0)$ does not exist.
Using the definition of derivative
$
\begin{equation}
\begin{aligned}
\qquad g'(x) =& \lim_{h \to 0} \frac{g(x + h) - g(x)}{h}
&&
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \frac{(x + h)^{\frac{2}{3}} - (x)^{\frac{2}{3}}}{h}
&& \text{Substitute $g(x + h)$ and $g(x)$}
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \frac{(x + h)^{\frac{2}{3}} - (x)^{\frac{2}{3}}}{h} \cdot \frac{(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} + (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}}{(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} + (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}}
&& \text{Multiply both numerator and denominator by $[(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}]$. Recall that $(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$}
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \frac{(x + h)^2 - \cancel{(x)^{\frac{2}{3}} (x +h)^{\frac{4}{3}}} + \cancel{(x)^{\frac{2}{3}} (x +h)^{\frac{4}{3}}} - \cancel{(x)^{\frac{4}{3}}(x + h)^{\frac{2}{3}}} + \cancel{(x)^{\frac{4}{3}}(x + h)^{\frac{2}{3}}} - x^2}{(h)[(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}]}
&& \text{Combine like terms}
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \frac{(x + h)^2 - x^2}{(h)[(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}]}
&& \text{Expand the equation}
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \frac{\cancel{x^2} + 2xh + h^2 - \cancel{x^2}}{(h)[(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}]}
&& \text{Combine like terms}
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \frac{2xh + h^2}{(h)[(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}]}
&& \text{Factor the numerator}
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \frac{\cancel{h} (2x + h)}{\cancel{(h)}[(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}]}
&& \text{Cancel out like terms}
\\
\\
\qquad g'(x) =& \lim_{h \to 0} \left[ \frac{2x + h}{(x + h)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + h)^{\frac{2}{3}} + (x)^{\frac{4}{3}}} \right] = \frac{2x + 0}{(x + 0)^{\frac{4}{3}} + (x)^{\frac{2}{3}} (x + 0)^{\frac{2}{3}} + (x)^{\frac{4}{3}}} = \frac{2x}{(x)^{\frac{4}{3}} + (x)^{\frac{2}{3}}(x)^{\frac{2}{3}} + (x)^{\frac{4}{3}}} = \frac{2x}{(x)^{\frac{4}{3}} + (x)^{\frac{4}{3}} + (x)^{\frac{4}{3}}}
&& \text{Evaluate the limit}
\\
\\
\qquad g'(x) =& \frac{2x}{3(x)^{\frac{4}{3}}}
&& \text{Factor the denominator}
\\
\\
\qquad g'(x) =& \frac{2 \cancel{x}}{3\cancel{(x)} (x)^{\frac{1}{3}}}
&& \text{Cancel out like terms}
\\
\\
\qquad g'(x) =& \frac{2}{3(x)^{\frac{1}{3}}}
&& \text{Substitute $x$ which is zero}
\\
\\
\qquad g'(0) =& \frac{2}{3(0)^{\frac{1}{3}}}
&& && \text{Simplify the equation}
\\
\\
\qquad g'(0) =& \frac{2}{0}
&&
\end{aligned}
\end{equation}
$
The function does not exist because the denominator is zero.
b.) Suppose that $a \neq 0$, find $g'(a)$.
Using the definition of derivative
$
\begin{equation}
\begin{aligned}
\qquad f'(a) =& \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
&&
\\
\\
\qquad f'(a) =& \lim_{x \to a} \frac{(x)^{\frac{2}{3}} - (a)^{\frac{2}{3}}}{x - a}
&& \text{Substitute $f(x)$ and $f(a)$}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \frac{ (x)^{\frac{2}{3}} - (a)^{\frac{2}{3}} }{x - a} \cdot \frac{ (x)^{\frac{4}{3}} + (ax)^{\frac{2}{3}} + (a)^{\frac{4}{3}} }{(x)^{\frac{4}{3}} + (ax)^{\frac{2}{3}} + (a)^{\frac{4}{3}}}
&& \text{Multiply both numerator and denominator by $[(x)^{\frac{4}{3}} + (ax)^{\frac{2}{3}} + (a)^{\frac{4}{3}}]$. Recall that $(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \frac{ x^2 - \cancel{(a)^{\frac{2}{3}} (x)^{\frac{4}{3}}} + \cancel{(a)^{\frac{2}{3}} (x)^{\frac{4}{3}}} - \cancel{(a)^{\frac{4}{3}} (x)^{\frac{2}{3}}} + \cancel{(a)^{\frac{4}{3}} (x)^{\frac{2}{3}}} - a^2 }{(x - a)[(x)^{\frac{4}{3}} + (ax)^{\frac{2}{3}} + (a)^{\frac{4}{3}}]}
&& \text{Combine like terms}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \frac{x^2 -a^2}{(x - a) [(x)^{\frac{4}{3}} + (ax)^{\frac{2}{3}} + (a)^{\frac{4}{3}}]}
&& \text{Factor the numerator}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \frac{\cancel{(x - a)} ( x + a)}{\cancel{(x - a)} [(x)^{\frac{4}{3}} + (ax)^{\frac{2}{3}} + (a)^{\frac{4}{3}}]}
&& \text{Cancel out like terms}
\\
\\
\qquad f'(a) =& \lim_{x \to a} \left[ \frac{x + a }{(x)^{\frac{4}{3}} + (ax)^{\frac{2}{3}} + (a)^{\frac{4}{3}}} \right] = \frac{a + a}{(a)^{\frac{4}{3}} + (a \cdot a)^{\frac{2}{3}} + (a)^{\frac{4}{3}}} = \frac{2a}{(a)^{\frac{4}{3}} + (a)^{\frac{4}{3}} +(a)^{\frac{4}{3}}}
&& \text{Evaluate the limit}
\\
\\
f'(a) =& \frac{2a}{3(a)^{\frac{4}{3}}}
&& \text{Factor the denominator}
\\
\\
f'(a) =& \frac{2\cancel{a}}{3\cancel{(a)}(a)^{\frac{1}{3}}}
&& \text{Cancel out like terms}
\\
\\
f'(a) =& \frac{2}{3(a)^{\frac{1}{3}}} \text{ or } \frac{2}{3 \sqrt[3]{a}}
\end{aligned}
\end{equation}
$
c.) Prove that $y = \displaystyle x^{\frac{2}{3}}$ has a vertical tangent line at $(0, 0)$
If the function has a vertical tangent line at $x = 0, \lim\limits_{x \to 0} f'(x) = \infty$
Given that, $f'(x) = \displaystyle \frac{2}{3(x)^{\frac{1}{3}}}$
Suppose that we substitute a value closer to 0 from the left and the right of the limit of $f'(x)$, let's say $x = -0.0000001$ and $x = 0.0000001$
$
\begin{equation}
\begin{aligned}
& \lim_{x \to 0^-} \frac{2}{3 \sqrt[3]{-0.0000001}} = -143.629
\\
\\
& \lim_{x \to 0^+} \frac{2}{3 \sqrt[3]{0.0000001}} = 143.629
\end{aligned}
\end{equation}
$
This means that where $x$ gets closer and closer to from the left, the value of the limit approaches a very large negative number. On the other hand, as $x$ gets closer and closer to from the right, the value of the limit approaches a very large positive number. The tangent lines with these values become steeper and steeper as $x$ approaches until such time that the tangent line becomes a vertical line @ $x = 0$.
Saturday, November 30, 2013
Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 48
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
In Celie's tenth letter to God, she describes seeing her daughter in a store with a woman. She had not seen her daughter since the night...
-
Let's start with terms: "expected value" means the average amount that you would win or lose over a large number of plays. The...
No comments:
Post a Comment