Find the integrals ∫81x−13√x2dx
∫x−13√x2dx=∫(x3√x2−13√x2)dx∫x−13√x2dx=∫(xx23−1x23)dx∫x−13√x2dx=∫(x13−x−23)dx∫x−13√x2dx=∫x13dx−∫x−23dx∫x−13√x2dx=x13+113+1−x−23+1−23+1+C∫x−13√x2dx=x4343−(x1313)+C∫x−13√x2dx=3x434−3x13+C∫81x−13√x2dx=3(8)434−3(8)13+C−[3(1)434−3(1)13+C]∫81x−13√x2dx=3[(8)13]4−3(2)+C−34+3−C∫81x−13√x2dx=3(2)44−6−34+3∫81x−13√x2dx=12−34−3∫81x−13√x2dx=334
No comments:
Post a Comment