Wednesday, October 2, 2013

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 40

Find the integrals 81x13x2dx

x13x2dx=(x3x213x2)dxx13x2dx=(xx231x23)dxx13x2dx=(x13x23)dxx13x2dx=x13dxx23dxx13x2dx=x13+113+1x23+123+1+Cx13x2dx=x4343(x1313)+Cx13x2dx=3x4343x13+C81x13x2dx=3(8)4343(8)13+C[3(1)4343(1)13+C]81x13x2dx=3[(8)13]43(2)+C34+3C81x13x2dx=3(2)44634+381x13x2dx=1234381x13x2dx=334

No comments:

Post a Comment