Given the matrix $\left[ \begin{array}{cccc}
1 & 3 & 6 & 2 \\
2 & 1 & 0 & 5 \\
0 & 0 & 1 & 0
\end{array} \right]$.
a.) State the dimension of the matrix.
$
\begin{equation}
\begin{aligned}
& \text{Matrix} && \text{Dimension} &&&
\\
\\
& \left[ \begin{array}{cccc}
1 & 3 & 6 & 2 \\
2 & 1 & 0 & 5 \\
0 & 0 & 1 & 0
\end{array} \right]
&& 3 \times 4
&&& \text{3 rows by 4 columns}
\end{aligned}
\end{equation}
$
b.) Is the matrix in row-echelon form?
No, the matrix is not in row-echelon form.
c.) Is the matrix in reduced row-echelon form?
Not, the matrix is not in reduced row-echelon form.
d.) Write the system of equations for which the given matrix is the augmented matrix.
The equivalent system of equations of the augmented matrix is
$
\left\{
\begin{array}{ccccc}
x & +3y & +6z & = & 2 \\
2x & +y & & = & 5 \\
& & z & = & 0
\end{array}
\right.
$
No comments:
Post a Comment