Monday, June 10, 2013

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 20

Determine the integral cos2xsin2xdx


cos2xsin2xdx=cos2x(2sinxcosx)dxApply Trigonometric Identity sin2x=2sinxcosxcos2xsin2xdx=2cos3xsinxdx


Let u=cosx, then du=sinxdx, so sinxdx=du. Thus,


2cos3xsinxdx=2u3du2cos3xsinxdx=2u3du2cos3xsinxdx=2(u3+13+1)+c2cos3xsinxdx=2u44+c2cos3xsinxdx=u42+c2cos3xsinxdx=(cosx)42+c2cos3xsinxdx=cos4x2+c

No comments:

Post a Comment