Wednesday, June 19, 2013

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 26

Determine the derivative of the function G(y)=(y1)4(y2+2y)5

G(y)=(y1)4(y2+2y)5G(y)=ddy[(y1)4(y2+2y)5]G(y)=[(y2+2y)5ddy(y1)4][(y1)4ddy(y2+2y)5][(y2+2y)5]2G(y)=[(y2+2y)54(y1)3ddy(y1)][(y1)45(y2+2y)4ddy(y2+2y)](y2+2y)10G(y)=[(y2+2y)54(y1)3(1)][(y1)45(y2+2y)4(2y+2)](y2+2y)10G(y)=[4(y2+2y)5(y1)3][5(y1)4(y2+2y)4(2y+2)](y2+2y)10G(y)=(y1)3(y2+2y)4[4(y2+2y)5(y1)(2y+2)](y2+2y)10G(y)=(y1)3[4y2+8y5(2y2+\cancel2y\cancel2y2)](y2+2y)6G(y)=(y1)3(4y2+8y10y2+10)(y2+2y)6G(y)=(y1)3(6y2+8y+10)(y2+2y)6

No comments:

Post a Comment