Determine the derivative of the function G(y)=(y−1)4(y2+2y)5
G′(y)=(y−1)4(y2+2y)5G′(y)=ddy[(y−1)4(y2+2y)5]G′(y)=[(y2+2y)5⋅ddy(y−1)4]−[(y−1)4⋅ddy(y2+2y)5][(y2+2y)5]2G′(y)=[(y2+2y)5⋅4(y−1)3ddy(y−1)]−[(y−1)4⋅5(y2+2y)4ddy(y2+2y)](y2+2y)10G′(y)=[(y2+2y)5⋅4(y−1)3(1)]−[(y−1)4⋅5(y2+2y)4(2y+2)](y2+2y)10G′(y)=[4(y2+2y)5(y−1)3]−[5(y−1)4(y2+2y)4(2y+2)](y2+2y)10G′(y)=(y−1)3(y2+2y)4[4(y2+2y)−5(y−1)(2y+2)](y2+2y)10G′(y)=(y−1)3[4y2+8y−5(2y2+\cancel2y−\cancel2y−2)](y2+2y)6G′(y)=(y−1)3(4y2+8y−10y2+10)(y2+2y)6G′(y)=(y−1)3(−6y2+8y+10)(y2+2y)6
No comments:
Post a Comment