Determine the limx→22x2+1x2+6x−4 and justify each step by indicating the appropriate limit law(s).
limx→22x2+1x2+6x−4=limx→2(2x2+1)limx→2(x2+6x−4)(Quotient Law)limx→22x2+1x2+6x−4=2limx→2x2+limx→21limx→2x2+6limx→2x−limx→24(Sum, Difference and Constant Law)limx→22x2+1x2+6x−4=2(2)2+1(2)2+6(2)−4(Constant, Special Limit and Power Special Limit Law.)limx→22x2+1x2+6x−4=34
No comments:
Post a Comment