Find the indefinite integral ∫x3√x2+1dx. Illustrate by graphing both the function and its antiderivative (take C=0).
If we let u=x2+1, then du=2xdx, so xdx=du2. Also x2=u−1. Thus,
∫x3√x2+1dx=∫x2√x2+1xdx∫x3√x2+1dx=∫u−1√udu2∫x3√x2+1dx=12∫u−1√udu∫x3√x2+1dx=12∫uu12−1u12du∫x3√x2+1dx=12(u12+112+1−u−12+1−12+1)+C∫x3√x2+1dx=12(u3232−u1212)+C∫x3√x2+1dx=12(2u323−2u12)+C∫x3√x2+1dx=u323−u12+Cbut c=0 ,so we have∫x3√x2+1dx=u323−u12+C∫x3√x2+1dx=(x2+1)323−√x2+1
Graph the function f(x)=(x2+1)323−√x2+1
Graph of antiderivative f′(x)=x3√x2+1
No comments:
Post a Comment