Monday, April 15, 2013

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 44

Use implicit differentiation to show that y=pqx(p/q)1 suppose that if y=xp/q, then yq=xp.

Using Power Rule and implicit differentiation.


yq=xpqyq1dydx=pxp1dydx=pxp1qyq1but y=xp/q, so dydx=pxp1q[(xp/q)q1] Using the Property of Exponent dydx=pq[xpx][(xp/qx)q(xp/q)]dydx=pq\cancelxp(xp/q)x\cancel(xp)dydx=pqxp/qxdydx=pqxp/q1

No comments:

Post a Comment