Use implicit differentiation to show that y′=pqx(p/q)−1 suppose that if y=xp/q, then yq=xp.
Using Power Rule and implicit differentiation.
yq=xpqyq−1dydx=pxp−1dydx=pxp−1qyq−1but y=xp/q, so dydx=pxp−1q[(xp/q)q−1] Using the Property of Exponent dydx=pq[xpx][(xp/qx)q(xp/q)]dydx=pq\cancelxp(xp/q)x\cancel(xp)dydx=pqxp/qxdydx=pqxp/q−1
No comments:
Post a Comment