Determine the integral $\displaystyle \int \frac{\sin \Phi}{\cos^3 \Phi} d \Phi$
$
\begin{equation}
\begin{aligned}
\int \frac{\sin \Phi}{\cos^3 \Phi} d \Phi =& \int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi
\end{aligned}
\end{equation}
$
Let $u = \cos \Phi$, then $du = - \sin \Phi d \Phi$, so $\sin \Phi d \Phi = -du$. Thus
$
\begin{equation}
\begin{aligned}
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \int \frac{1}{u^3} \cdot -du
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& - \int \frac{1}{u^3} du
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& - \int u^{-3} du
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{-u^{-3 + 1}}{-3 + 1} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{-u^{-2}}{-2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{u^{-2}}{2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2u^2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2 (\cos \Phi)^2} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2 \cos^2 \Phi} + c
\\
\\
\int \frac{1}{\cos^3 \Phi} \sin \Phi d \Phi =& \frac{1}{2} \sec^2 \Phi + c
\end{aligned}
\end{equation}
$
then
$
\begin{equation}
\begin{aligned}
\int \sec^3 x dx =& \int udv
\\
\\
\int \sec^3 x dx =& uv - \int v du
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \tan x \cdot \sec x \tan x dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec x \tan^2 x dx
\qquad \text{Apply Trigonometric Identity } \sec^2 x = \tan^2 x + 1
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec x (\sec^2 x - 1) dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int (\sec^3 x - \sec x) dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec^2 x dx + \int \sec x dx
\qquad \text{Combine like terms}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
\int \sec^3 x dx + \int \sec^2 x dx =& \sec x \tan x + \int \sec x dx
\\
\\
2 \int \sec^3 x dx =& \sec x \tan x + \int \sec x dx
\\
\\
2 \int \sec^3 x dx =& \sec x \tan x + \ln (\sec x + \tan x) + c
\\
\\
\int \sec^3 x dx =& \frac{\sec x \tan x + \ln (\sec x + \tan x)}{2} + c
\end{aligned}
\end{equation}
$
@ 2nd term
$\int \sec x dx = \ln (\sec x + \tan x) + c$
Combine the results of the integration term by term
$
\begin{equation}
\begin{aligned}
\int \tan^2 x \sec x dx =& \frac{\sec x \tan x + \ln(\sec x + \tan x)}{2} - \ln (\sec x + \tan x) + c
\\
\\
\int \tan^2 x \sec x dx =& \frac{\sec x \tan x + \ln(\sec x + \tan x) - 2 \ln (\sec x + \tan x)}{2} + c
\\
\\
\int \tan^2 x \sec x dx =& \frac{\sec x \tan x - \ln (\sec x + \tan x)}{2} + c
\\
\\
\text{ or} &
\\
\\
\int \tan^2 x \sec x dx =& \frac{1}{2} (\sec x \tan x - \ln (\sec x + \tan x)) + c
\end{aligned}
\end{equation}
$
No comments:
Post a Comment