Wednesday, February 27, 2013

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 36

Determine the integral sinΦcos3ΦdΦ


sinΦcos3ΦdΦ=1cos3ΦsinΦdΦ


Let u=cosΦ, then du=sinΦdΦ, so sinΦdΦ=du. Thus


1cos3ΦsinΦdΦ=1u3du1cos3ΦsinΦdΦ=1u3du1cos3ΦsinΦdΦ=u3du1cos3ΦsinΦdΦ=u3+13+1+c1cos3ΦsinΦdΦ=u22+c1cos3ΦsinΦdΦ=u22+c1cos3ΦsinΦdΦ=12u2+c1cos3ΦsinΦdΦ=12(cosΦ)2+c1cos3ΦsinΦdΦ=12cos2Φ+c1cos3ΦsinΦdΦ=12sec2Φ+c


then


sec3xdx=udvsec3xdx=uvvdusec3xdx=secxtanxtanxsecxtanxdxsec3xdx=secxtanxsecxtan2xdxApply Trigonometric Identity sec2x=tan2x+1sec3xdx=secxtanxsecx(sec2x1)dxsec3xdx=secxtanx(sec3xsecx)dxsec3xdx=secxtanxsec2xdx+secxdxCombine like terms




sec3xdx+sec2xdx=secxtanx+secxdx2sec3xdx=secxtanx+secxdx2sec3xdx=secxtanx+ln(secx+tanx)+csec3xdx=secxtanx+ln(secx+tanx)2+c


@ 2nd term

secxdx=ln(secx+tanx)+c

Combine the results of the integration term by term


tan2xsecxdx=secxtanx+ln(secx+tanx)2ln(secx+tanx)+ctan2xsecxdx=secxtanx+ln(secx+tanx)2ln(secx+tanx)2+ctan2xsecxdx=secxtanxln(secx+tanx)2+c ortan2xsecxdx=12(secxtanxln(secx+tanx))+c

No comments:

Post a Comment