Determine the integral ∫sinΦcos3ΦdΦ
∫sinΦcos3ΦdΦ=∫1cos3ΦsinΦdΦ
Let u=cosΦ, then du=−sinΦdΦ, so sinΦdΦ=−du. Thus
∫1cos3ΦsinΦdΦ=∫1u3⋅−du∫1cos3ΦsinΦdΦ=−∫1u3du∫1cos3ΦsinΦdΦ=−∫u−3du∫1cos3ΦsinΦdΦ=−u−3+1−3+1+c∫1cos3ΦsinΦdΦ=−u−2−2+c∫1cos3ΦsinΦdΦ=u−22+c∫1cos3ΦsinΦdΦ=12u2+c∫1cos3ΦsinΦdΦ=12(cosΦ)2+c∫1cos3ΦsinΦdΦ=12cos2Φ+c∫1cos3ΦsinΦdΦ=12sec2Φ+c
then
∫sec3xdx=∫udv∫sec3xdx=uv−∫vdu∫sec3xdx=secxtanx−∫tanx⋅secxtanxdx∫sec3xdx=secxtanx−∫secxtan2xdxApply Trigonometric Identity sec2x=tan2x+1∫sec3xdx=secxtanx−∫secx(sec2x−1)dx∫sec3xdx=secxtanx−∫(sec3x−secx)dx∫sec3xdx=secxtanx−∫sec2xdx+∫secxdxCombine like terms
∫sec3xdx+∫sec2xdx=secxtanx+∫secxdx2∫sec3xdx=secxtanx+∫secxdx2∫sec3xdx=secxtanx+ln(secx+tanx)+c∫sec3xdx=secxtanx+ln(secx+tanx)2+c
@ 2nd term
∫secxdx=ln(secx+tanx)+c
Combine the results of the integration term by term
∫tan2xsecxdx=secxtanx+ln(secx+tanx)2−ln(secx+tanx)+c∫tan2xsecxdx=secxtanx+ln(secx+tanx)−2ln(secx+tanx)2+c∫tan2xsecxdx=secxtanx−ln(secx+tanx)2+c or∫tan2xsecxdx=12(secxtanx−ln(secx+tanx))+c
No comments:
Post a Comment