Find a number $\delta$ by using a graph such that if $5 < x < 5 + \delta \quad$ then $\displaystyle \quad \frac{x^2}{\sqrt{x-5}} > 100$
We can determine the value of $\delta$ by getting the point of intersection of the curve and the line $y=100$. As shown in the graph:
$
\begin{equation}
\begin{aligned}
\frac{x^2}{\sqrt{x-5}} & = 100\\
x^2 &= 100\sqrt{x-5}\\
x^2 - 100 \sqrt{x-5} & = 0\\
\end{aligned}
\end{equation}
$
Solving for $x$,
$\quad x = 5.0659$
Hence, the value of $\delta$ is...
$
\quad
\begin{equation}
\begin{aligned}
5 + \delta & \leq x \\
\delta & \leq x - 5\\
\delta & \leq 5.0659 -5\\
\delta & \leq 0.0659
\end{aligned}
\end{equation}
$
No comments:
Post a Comment