Find all real solutions of the equation √1+√x+√2x+1=√5+√x
√1+√x+√2x+1=√5+√xGiven1+√x+√2x+1=5+√xSquare both sides√x+√2x+1=4+√xSubtract 1x+√2x+1=16+8√x+xSquare both sides√2x+1=16+8√xCancel out x2x+1=256+256√x+64xSquare both sides256√x+62x+255=0Combine like terms256√x+62(√x)2+255=0If we let w=√x256w+62w2+255=0Subtract 25562w2+256w=−255Divide both sides by 62w2+25662w+163843844=−25562+163843844Complete the square: add (256622)2=163843844(w+12862)2=2871922Perfect Squarew+12862=±√2871922Take the square rootw=−12862±√28731√2Subtract 12862 and simplifyw=−128+√57462 and w=−128−√57462Solve for w√x=−128+√57462 and √x=−128−√57462Substitute w=√xx=(−128+√57462)2 and x=(−128−√57462)2Solve for x
No comments:
Post a Comment