Saturday, January 19, 2013

Calculus of a Single Variable, Chapter 5, 5.5, Section 5.5, Problem 42

Recall that the derivative of a function f at a point x is denoted as y' = f'(x) .
There basic properties and formula we can apply to simplify a function.
For the problem y = x(6^(-2x)), we may apply the Product Rule for derivative:
Product Rule provides the formula:
y = h(x)g(x) then the derivative: y'= h'(x)*g(x) + h(x)*g'(x) .
In the problem, y = x(6^(-2x)) , we let:
h(x)=x and g(x) = 6^(-2x) .
Derivative of each function:
h'(x)= 1
For the other function g(x)=6^(-2x) , we apply derivative of exponential function that follows: d/(du)(a^u) =a^u* ln(a)*du where a!=1
Then,
g'(x)=6^(-2x)*ln(6) *(-2 ) .
We now have:
h(x) =x
h'(x) = 1
g(x)= 6^(-2x)
g'(x)=6^(-2x)*ln(6) *(-2) or(-2)(6^(-2x)) ln(6)
Then applying the Product Rule: y' =h'(x) g(x)+ h(x)* g'(x) , we get:
y'=1*6^(-2x)+(-2)(6^(-2x)) ln(6) *x
y' = 6^(-2x) -(2)(6^(-2x)) xln(6)
It can be express in another form.
We can let:
6^(-2x) = (6^2)^(-x) = 36^(-x)
6^(-2x) (2)= (3*2)^(-2x)(2)
= 3^(-2x)*2^(-2x)*2
= (3^2)^(-x) *2^(-2x+1)
= 9^(-x)*2^(-2x+1)
y' = 6^(-2x) -2(6^(-2x)) xln(6) becomes:

y' = 36^(-x) - 9^(-x)*2^(-2x+1)xln(6)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...