Solve the equation $\displaystyle \frac{4}{9} + a = -\frac{2}{9}$ and check 
    if your answer is correct.
  
	$
	\begin{equation}
	\begin{aligned}
		\frac{4}{9} + a &= -\frac{2}{9} - \frac{4}{9} && \text{Subtract $\displaystyle \frac{4}{9}$ from each side} \\
		\\
		a &= \frac{-6}{9} && \text{Simplify}\\
		\\
		a &= -\frac{2}{3} && \text{Divide both sides by 3}
	\end{aligned}
	\end{equation}
	$
	
	By checking,
	
	$
	\begin{equation}
	\begin{aligned}
		\frac{4}{9} + \left( - \frac{2}{3} \right) &= - \frac{2}{9}&& \text{Replace the variable by the given number, } \frac{-2}{3}\\
		\\
		\frac{4-2(3)}{9} &= \frac{-2}{9} && \text{Evaluate the numerical expressions}\\
		\\
		\frac{-2}{9} &= -\frac{-2}{9} && \text{Compare the results}
	\end{aligned}
	\end{equation}
	$	
		
	
	The results are same; Therefore, $\displaystyle -\frac{2}{3}$ is a solution of the equation $\displaystyle \frac{4}{9} + a = -\frac{2}{9}$
No comments:
Post a Comment