Solve the system of equations: $
\begin{equation}
\begin{aligned}
1.25x - 0.01y =& 1.5 \\
0.24x - 0.02y =& -1.52
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
0.24x - 0.02y =& -1.52
\qquad \text{Solve equation 2 for } y
\\
\\
-0.02y =& -0.24x - 1.52
\\
\\
y =& \frac{-0.24x - 1.52}{-0.02}
\\
\\
y =& 12x+76
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
1.25x - 0.01y =& 1.5
\qquad \text{Substitute } 12x+76 \text{ for $y$ in equation 1}
\\
\\
1.25x-0.01 (12x+76) =& 1.5
\\
\\
1.25x - 0.12x - 0.76 =& 1.5
\\
\\
1.13x =& 1.5+0.76
\\
\\
1.13x =& 2.26
\\
\\
x =& 2
\end{aligned}
\end{equation}
$
Substitute the value of $x$ in equation 2
$
\begin{equation}
\begin{aligned}
y =& 12(2) + 76
\\
\\
y =& 24+76
\\
\\
y =& 100
\end{aligned}
\end{equation}
$
The solution is $(2,100)$.
No comments:
Post a Comment