Friday, November 2, 2012

Single Variable Calculus, Chapter 4, 4.4, Section 4.4, Problem 8

Find the limit limx12x35x+21+4x2+3x3 and justify each step by indicating the appropriate properties of limits.


limx12x35x+21+4x2+3x31x31x3=limx1x3(12x35x+2)1x3(1+4x2+3x3)=limx12\cancelx3\cancelx35xx3+2x31x3+4x2x3+3\cancelx3\cancelx3=limx125x2+2x31x3+4x+3Applylimxa[nf(x)]=nlimxaf(x)=limx125x2+2x31x3+4x+3Apply limxa[f(x)g(x)]=limxaf(x)limxag(x)=limx(125x2+2x3)limx(1x3+4x+3)Apply limxa[f(x)±g(x)]=limxaf(x)±limxag(x)=12limx5x2+limxzx3limx1x3+limx4x+3Apply limx1xn=0=120+00+0+3=123=4=2

No comments:

Post a Comment