Find the limit limx→∞√12x3−5x+21+4x2+3x3 and justify each step by indicating the appropriate properties of limits.
limx→∞√12x3−5x+21+4x2+3x3⋅1√x31√x3=limx→∞√1x3(12x3−5x+2)1x3(1+4x2+3x3)=limx→∞√12\cancelx3\cancelx3−5xx3+2x31x3+4x2x3+3\cancelx3\cancelx3=limx→∞√12−5x2+2x31x3+4x+3Applylimx→a[n√f(x)]=n√limx→af(x)=√limx→∞12−5x2+2x31x3+4x+3Apply limx→a[f(x)g(x)]=limx→af(x)limx→ag(x)=√limx→∞(12−5x2+2x3)limx→∞(1x3+4x+3)Apply limx→a[f(x)±g(x)]=limx→af(x)±limx→ag(x)=√12−limx→∞5x2+limx→∞zx3limx→∞1x3+limx→∞4x+3Apply limx→∞1xn=0=√12−0+00+0+3=√123=√4=2
No comments:
Post a Comment