Sunday, November 11, 2012

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 35

Determine y of x3+y3=1 by using implicit differentiation.

Solving for 1st Derivative


ddx(x3)+ddx(y3)=ddx(1)3x2+3y2dydx=03y2dydx=3x2\cancel3y2dydx\cancel3y2=\cancel3x2\cancel3y2dydx=x2y2


Solving for the 2nd Derivative


d2ydx2=y2ddx(x2)(x2)ddx(y2)(y2)2d2ydx2=(y2)(2x)(x2)(2y)dydxy4d2ydx2=2xy2+2x2ydydxy4We know that dydx=x2y2d2ydx2=2xy2+(2x2y)(x2y2)y4d2ydx2=2xy2+(2x4y)y4d2ydx2=2xy32x4yy4d2ydx2=2x(y3+x3)(y)(y4)We know that x3+y3=1d2ydx2=2x(1)y5d2ydx2=2xy5

No comments:

Post a Comment