Determine y″ of x3+y3=1 by using implicit differentiation.
Solving for 1st Derivative
ddx(x3)+ddx(y3)=ddx(1)3x2+3y2dydx=03y2dydx=−3x2\cancel3y2dydx\cancel3y2=−\cancel3x2\cancel3y2dydx=−x2y2
Solving for the 2nd Derivative
d2ydx2=y2ddx(−x2)−(−x2)ddx(y2)(y2)2d2ydx2=(y2)(−2x)−(−x2)(2y)dydxy4d2ydx2=−2xy2+2x2ydydxy4We know that dydx=−x2y2d2ydx2=−2xy2+(2x2y)(−x2y2)y4d2ydx2=−2xy2+(−2x4y)y4d2ydx2=−2xy3−2x4yy4d2ydx2=−2x(y3+x3)(y)(y4)We know that x3+y3=1d2ydx2=−2x(1)y5d2ydx2=−2xy5
No comments:
Post a Comment