Prove ∫secnxdx=tanxsecn−2xn−1+n−2n−1∫secn−2xdx(n≠1)
Notice that ∫secnxdx=∫secn−2x⋅sec2xdx
So if we let n=secn−2x(secxtanx)dx and dv=sec2xdx, then
du=(n−2)secn−2x(secxtanx)dx and v=∫sec2xdx=tanx
Thus,
∫secn−2x⋅sec2xdx=uv−∫vdu=tanx(secn−2x)−∫(tanx)[(n−2)secn−3x(secxtanx)]=tan(secn−2x)−(n−2)∫secn−2xtan2x
Recall for the identity tanx=secx−1
So,
[(n−2)+1]∫secn−2x⋅sec2xdx=tanx(secn−2x)+(n−2)∫secn−2xdx
(n−1)∫secn−2x⋅sec2xdx=tanx(secn−2x)+(n−2)∫secn−2xdx
Dividing with sides by (n−1), we get
∫secn−2x⋅sec2xdx=tanx(secn−2x)n−1+n−2n−1∫secn−2xdx
No comments:
Post a Comment