Tuesday, October 16, 2012

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 50

Prove secnxdx=tanxsecn2xn1+n2n1secn2xdx(n1)
Notice that secnxdx=secn2xsec2xdx

So if we let n=secn2x(secxtanx)dx and dv=sec2xdx, then

du=(n2)secn2x(secxtanx)dx and v=sec2xdx=tanx

Thus,

secn2xsec2xdx=uvvdu=tanx(secn2x)(tanx)[(n2)secn3x(secxtanx)]=tan(secn2x)(n2)secn2xtan2x


Recall for the identity tanx=secx1
So,
[(n2)+1]secn2xsec2xdx=tanx(secn2x)+(n2)secn2xdx
(n1)secn2xsec2xdx=tanx(secn2x)+(n2)secn2xdx

Dividing with sides by (n1), we get
secn2xsec2xdx=tanx(secn2x)n1+n2n1secn2xdx

No comments:

Post a Comment