Determine the average value of the function f(x)=x2√1+x3 on the interval [0,2].
fave=1b−a∫baf(x)dxfave=12−0∫20x2√1+x3dxLet u=1+x3du=3x2dx
Make sure that your upper and lower limits are also in terms of u.
fave=12(13)∫1+(2)31+(0)3u12dufave=16∫91u12dufave=16[u3232]91fave=218[932−132]fave=269
No comments:
Post a Comment