Given the function $\displaystyle f(x) = x^3 $. Find $f(a)$, $f(a+h)$ and the difference quotient $\displaystyle \frac{f(a+h) - f(a)}{h}$ where $h \neq 0$
For $f(a)$
$\displaystyle f(a) = a^3 $ Replace $x$ by $a$
For $f(a+h)$
$
\begin{equation}
\begin{aligned}
f(a+h) &= (a+h)^3 && \text{Replace } x \text{ by } (a + h)\\
\\
&= a^3 + 3a^2h + 3ah^2 + h^3
\end{aligned}
\end{equation}
$
For $\displaystyle \frac{f(a+h)-f(a)}{h}$
$
\begin{equation}
\begin{aligned}
\frac{f(a-h)-f(a)}{h} &= \frac{a^3 + 3a^2h + 3ah^2 + h^3 - a^3}{h} && \text{Substitute } f(a+h) = a^3 + 3a^h + 3ah^2 + h^3 \text{ and } f(a) = a^3\\
\\
&= \frac{3a^2h + 3ah^2 + h^3}{h} && \text{Simplify}\\
\\
&= \frac{\cancel{h}\left( 3a^2 + 3ah + h^2 \right)}{\cancel{h}} && \text{Cancel out like terms}\\
\\
&= 3a^2 + 3ah + h^2
\end{aligned}
\end{equation}
$
No comments:
Post a Comment