Evaluate ∫π0ecostsin2tdt by making a substitution first, then by using Integration by parts.
Recall that sin2t=2sintcost so,
∫π0ecostsin2tdt=∫π0ecost(2sintcost)dt
if we let z=cost, then dz=−sintdt
Make sure that the upper and lower limits are also in terms of z, so...
∫π0ecost(2sintcost)dt=−2∫cosπcos0zezdz=−2∫−11zezdz
By using integration by parts,
If we let u=z and dv=ezdz. Then,
du=dz and v=∫ezdz=ez
So,
−2∫−11zezdz=uv−∫vdu=−2[zez−∫ezdz]=−2[zez−ez]=−2ez[z−1]
Evaluating from 1 to -1,
=−4e
No comments:
Post a Comment