Tuesday, July 3, 2012

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 8

Determine the $\lim\limits_{u \rightarrow -2} \quad \sqrt{u^4+3u+6}$ and justify each step by indicating the appropriate limit law(s).


$
\begin{equation}
\begin{aligned}
\lim\limits_{u \rightarrow -2} \quad \sqrt{u^4+3u+6} & = \sqrt{\lim\limits_{u \rightarrow -2} (u^4+3u+6)} && \text{(Root Law)}\\
\lim\limits_{u \rightarrow -2} \quad \sqrt{u^4+3u+6} & = \sqrt{\lim\limits_{u \rightarrow -2} u^4 + \lim\limits_{u \rightarrow -2}3u + \lim\limits_{u \rightarrow -2} 6} && \text{(Sum Law)}\\
\lim\limits_{u \rightarrow -2} \quad \sqrt{u^4+3u+6} & = \sqrt{\lim\limits_{u \rightarrow -2}u^4 + 3 \lim\limits_{u \rightarrow -2} u + 6 } && \text{(Constant Multiple and Constant Law)}\\
\lim\limits_{u \rightarrow -2} \quad \sqrt{u^4+3u+6} & = \sqrt{(-2)^4+3(-2)+6} && \text{(Power Special Limit Law)}
\end{aligned}
\end{equation}\\
\boxed{ \lim\limits_{u \rightarrow -2} \quad \sqrt{u^4+3u+6} = 4}
$

No comments:

Post a Comment